The following table shows that Newton's
equation for finding the gravitational force between two bodies is
equivalent to finding the linear force of two overlapping composite
vacuum fields. The mass numbers are needed to allow for the compaction
of some of the vacuum fields within the composite vacuum fields.
The following table compares the force of
gravity found using Newton's formula, with the force found by
overlapping two vacuum fields with the same distances between centres as
those used in the gravity table.
Vacuum obeys the standard inverse square
law and therefore has the same total force on all concentric spheres.
GRAVITY |
|
VACUUM |
|
|
|
|
|
|
|
force per unit of |
|
G(l-m) |
mass |
mass |
|
|
|
|
surface |
surface area |
|
minus |
m1 |
m2 |
r |
r² |
Gm1m2/r² |
|
area |
G1 |
G2 |
G(l-m) |
Gm1m2/r² |
a |
b |
d |
e |
f |
|
k |
l |
m |
o |
p |
50 |
30 |
2000000 |
4E+12 |
2.50125E-20 |
|
5.02655E+13 |
9.94718E-13 |
5.96831E-13 |
2.65E-23 |
-2.50E-20 |
50 |
30 |
3000000 |
9E+12 |
1.11167E-20 |
|
1.13097E+14 |
4.42097E-13 |
2.65258E-13 |
1.18E-23 |
-1.11E-20 |
50 |
30 |
4000000 |
1.6E+13 |
6.25313E-21 |
|
2.01062E+14 |
2.4868E-13 |
1.49208E-13 |
6.63E-24 |
-6.25E-21 |
50 |
30 |
5000000 |
2.5E+13 |
4.002E-21 |
|
3.14159E+14 |
1.59155E-13 |
9.5493E-14 |
4.25E-24 |
-4.00E-21 |
50 |
30 |
6000000 |
3.6E+13 |
2.77917E-21 |
|
4.52389E+14 |
1.10524E-13 |
6.63146E-14 |
2.95E-24 |
-2.78E-21 |
50 |
30 |
7000000 |
4.9E+13 |
2.04184E-21 |
|
6.15752E+14 |
8.12015E-14 |
4.87209E-14 |
2.17E-24 |
-2.04E-21 |
50 |
30 |
8000000 |
6.4E+13 |
1.56328E-21 |
|
8.04248E+14 |
6.21699E-14 |
3.73019E-14 |
1.66E-24 |
-1.56E-21 |
50 |
30 |
9000000 |
8.1E+13 |
1.23519E-21 |
|
1.01788E+15 |
4.91219E-14 |
2.94731E-14 |
1.31E-24 |
-1.23E-21 |
50 |
30 |
10000000 |
1E+14 |
1.0005E-21 |
|
1.25664E+15 |
3.97887E-14 |
2.38732E-14 |
1.06E-24 |
-9.99E-22 |
50 |
30 |
11000000 |
1.21E+14 |
8.2686E-22 |
|
1.52053E+15 |
3.28833E-14 |
1.973E-14 |
8.77E-25 |
-8.26E-22 |
50 |
30 |
12000000 |
1.44E+14 |
6.94792E-22 |
|
1.80956E+15 |
2.76311E-14 |
1.65786E-14 |
7.37E-25 |
-6.94E-22 |
50 |
30 |
13000000 |
1.69E+14 |
5.92012E-22 |
|
2.12372E+15 |
2.35436E-14 |
1.41262E-14 |
6.28E-25 |
-5.91E-22 |
50 |
30 |
14000000 |
1.96E+14 |
5.10459E-22 |
|
2.46301E+15 |
2.03004E-14 |
1.21802E-14 |
5.42E-25 |
-5.10E-22 |
50 |
30 |
15000000 |
2.25E+14 |
4.44667E-22 |
|
2.82743E+15 |
1.76839E-14 |
1.06103E-14 |
4.72E-25 |
-4.44E-22 |
50 |
30 |
16000000 |
2.56E+14 |
3.9082E-22 |
|
3.21699E+15 |
1.55425E-14 |
9.32548E-15 |
4.15E-25 |
-3.90E-22 |
50 |
30 |
17000000 |
2.89E+14 |
3.46194E-22 |
|
3.63168E+15 |
1.37677E-14 |
8.26064E-15 |
3.67E-25 |
-3.46E-22 |
50 |
30 |
18000000 |
3.24E+14 |
3.08796E-22 |
|
4.0715E+15 |
1.22805E-14 |
7.36828E-15 |
3.28E-25 |
-3.08E-22 |
50 |
30 |
19000000 |
3.61E+14 |
2.77147E-22 |
|
4.53646E+15 |
1.10218E-14 |
6.61309E-15 |
2.94E-25 |
-2.77E-22 |
50 |
30 |
20000000 |
4E+14 |
2.50125E-22 |
|
5.02655E+15 |
9.94718E-15 |
5.96831E-15 |
2.65E-25 |
-2.50E-22 |
To convert gravitational force to vacuum force, multiply by
1.06E-03 |
|
|
|
|
The following table shows that the difference decreases with distance in
a fractional order.
|
G(l-m) |
|
|
|
minus |
difference |
|
|
Gm1m2/r² |
a-b |
b/a |
|
p |
|
|
a |
-2.50E-20 |
|
|
b |
-1.11E-20 |
-1.39E-20 |
5/9 |
|
-6.25E-21 |
-4.86E-21 |
4/9 |
|
-4.00E-21 |
-2.25E-21 |
1/3 |
|
-2.78E-21 |
-1.22E-21 |
1/3 |
|
-2.04E-21 |
-7.37E-22 |
1/4 |
|
-1.56E-21 |
-4.78E-22 |
1/4 |
|
-1.23E-21 |
-3.28E-22 |
1/5 |
|
-9.99E-22 |
-2.34E-22 |
1/5 |
|
-8.26E-22 |
-1.73E-22 |
1/6 |
|
-6.94E-22 |
-1.32E-22 |
1/6 |
|
-5.91E-22 |
-1.03E-22 |
1/7 |
|
-5.10E-22 |
-8.15E-23 |
1/7 |
|
-4.44E-22 |
-6.57E-23 |
1/8 |
|
-3.90E-22 |
-5.38E-23 |
1/8 |
|
-3.46E-22 |
-4.46E-23 |
1/9 |
|
-3.08E-22 |
-3.74E-23 |
1/9 |
|
-2.77E-22 |
-3.16E-23 |
1/9 |
|
-2.50E-22 |
-2.70E-23 |
0 |
|